*Independent *Cooperative *Visuals	Practice *Whole group Instruction earning *Technology Integration *Group/Directed Practice	
TEKS/Standar 8.4A - Patterns, connections am The student is ex given another re verbal description) 8.5A - predict, fi appropriate tabl 8.5B - find and e an arithmeticse	ds: lationships, and algebraic thinking. The student makes ng various representations of a numerical relationship. ected to generate a different representation of data resentation of data (such as a table, graph, equation, or). d, and justify solutions to application problems using s , graphs, and algebraic equations. valuate an algebraic expression to determine any term in uence (with a constant rate of change).	Homework: (None)
Time 52 minutes Students will use a compass and pencil to construct different triangles. 50 minutes	Procedures \& Objectives for Lesson Activities Today's lesson will be centered on learning how to construct triangles. Students will be using a compass and pencil to construct 30-6090, acute, and congruent triangles.	Materials needed -Compass -Pencil -How to Construct a Triangle. -Doc Cam
Introduction: Class Explanation Students will receive instruction for the class and triangle construction. 5 minutes	Today we are going to learn how to construct three different types of triangles. In constructing a triangle, we are to use these compasses (hold up the compass). A compass is used to make perfect circles, but today we are going to be using it to make measurements on triangles and hopefully see the link between triangle construction and circles. Quickly, when you look at your paper that you picked up on the way in the door you will notice that there is, on the first page, a rectangle on	-Compass -Pencil -How to Construct a Triangle. -Doc Cam

	the right side of the page. To begin, we will be constructing our triangle in that rectangle on the right side of the page.	
LESSON	STRUCTURE/ACTIVITIES	Lectures
$\mathbf{1}^{\text {st }}$ Activity: Whole group Instruction	Constructing a congruent triangle is very simple in that we will be using our compass to measure the lengths of each side to reconstruct the triangle.	-Compass Students will construct a congruent triangle using a compass.
Begin by simply drawing the base of the triangle parallel to the bottom of the page. Now, you have the base constructed we want to draw an arc at the same length as one of the sides. So, we open our compasses to the same length as DF and draw an arc.	a Triangle. minutruct	
	-Doc Cam	

10 minutes		
$3^{\text {ra }}$ Activity: Whole group Instruction Students will construct an equilateral triangle using a compass. 10 minutes	Now let's take a look at our second page and construct an equilateral triangle. First, define an equilateral triangle. (student response) All sides and angles have the same measure. Therefore, use your compass to measure the distance between the two points, A and B. Then make two arcs from A and B using that measure. Where those arcs intersect, we know that this is the only point at which the third vertex of our equilateral triangle can exist. Now we just need to make our lines that connect our equilateral triangle's vertices.	-Compass -Pencil -How to Construct a Triangle. -Doc Cam
$4^{\text {m }}$ Activity: Whole group Instruction Students will construct a 30-60-90 triangle using a compass. 10 minutes	In a similar fashion as used with the other two triangles, walk the students through the construction of a 30-60-90 triangle using the doc cam and a compass of your own.	-Compass -Pencil -How to Construct a Triangle. -Doc Cam

CLOSURE	What do you know about the distance of an arc		
from the point at which it is referenced?			
How is this fact (the consistent distance of an			
arc from a point) important to the construction			
of a triangle?		$\quad .$	
:---			

